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ABSTRACT 
Inspired by popular personality type indicators, we develop 

a framework for classifying individuals by their computer-aided 

design (CAD) behaviours. We are motivated by the trend of 

modern CAD software towards cloud platforms and expanded 

collaborative features. Cloud-CAD platforms enable 

collaboration by increasing access, and reducing conflicts and 

barriers to file-sharing.  

In order to generate insight to support CAD collaboration, 

we analyze the real-world data from an industry partner’s 

product development project, consisting of eight professional 

designers working on a cloud-CAD platform. This data 

corresponds to more than 1,420,000 actions over a span of eight 

months. Via hierarchical clustering, we group 79 unique CAD 

activities into 14 categories of CAD action groups, such as Part 

Studio, Assembly, Comment, View/Scan and Export. Next, we 

identify the degree to which each of the eight designers performs 

activity in these CAD action groups. We demonstrate the 

usefulness of this framework by highlighting insights revealed by 

the CAD action group mapping, confirmed via discussion with 

the industry partner. This CAD-type behaviour framework 

provides a tool for assessment and reflection on the types of 

behavioural tendencies present or missing on a team of 

designers. It can assist CAD educators and trainees in 

understanding their comprehensive CAD learning trajectory. 

Future extensions of the framework could leverage artificial 

intelligence techniques to provide real-time feedback on 

designer roles. 
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analytics; clustering 

 

1. INTRODUCTION 
 When building a collaborative engineering team, it is crucial 

to recruit new hires that complement the existing team. Previous 

studies have considered the influence of personality traits and 

types on design-team success [1–4]. For this reason managers 

often use personality tests, such as the Myers-Briggs Type 

Indicator (MBTI) questionnaire, to identify an individual’s work 

preferences [5–7]. Relying on self-reported responses, these tests 

provide a basis for understanding how an individual may behave 

in certain situations by categorizing their behaviour tendencies.  

 Inspired by personality tests, we propose a practical 

framework to analyze team member contributions to computer-

aided design (CAD) work. In other words, we seek a “CAD type 

indicator,” categorizing the behaviours of designers and their 

contributions to CAD models. 

 This framework is particularly relevant at this moment in 

time for two reasons: first, because of the increasing prevalence 

of cloud-CAD software and its accompanying collaboration 

features; second, because cloud-CAD software enables the 

collection of large-scale user analytics, providing the data 

necessary to generate and classify relevant CAD behaviours. 

 By better classifying CAD behaviours, our framework 

allows CAD designers, and engineering managers, to better 

delegate and coordinate their work, and to better chart their 

learning trajectories. 

 

2. BACKGROUND 
 

2.1 Cloud-CAD: Collaboration 
 Computer-aided design (CAD) is software used by 

engineers to create models, test simulations, and distribute ideas 

with teammates. Previous studies have examined CAD artifacts 

in order to draw conclusions and propose prescriptions for the 

design process [8,9]. 

 CAD work has become synonymous with solitary work 

because its traditional form has a rigid sharing structure in which 

active contributions are limited to one computer at a time [10]. 

Until the current editor chooses to release their models, these 

changes are not propagated to the entire team. Modern cloud-

CAD stores changes and commands directly to the cloud, 
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making edits visible in real-time from any computer [11–13]. 

Thus, cloud-CAD supports the transition of CAD modelling and 

assembly from an individual- to a team-based endeavour. Recent 

works have explored the new working styles enabled by cloud-

CAD, with data collected via controlled experiments [14–19].  

Our approach uses data from real industry environments rather 

than simulated ones. With this information, we seek to identify 

varying CAD user behaviours. 

 
2.2 Personality Types 
 Perhaps the most widely used personality test, the Myers-

Briggs Type Indicator was developed as a means to understand 

how individuals would behave, as categorized by four personal 

tendencies. These four groupings are extraversion/introversion, 

sensing/intuition, thinking/feeling, and judging/perceiving [5–

7]. Individuals take a self-assessment in which they choose one 

of two ways they will behave in specific scenarios. Based on 

their responses, an individual is placed in one of 16 MBTI types, 

with their specified type expressing characteristics that the 

individual would likely exhibit.  

 While managers will often use this approach as a tool for 

team and leadership development, these tests face criticism for 

their lack of proper psychological fundamentals. Some innate 

flaws with the tool derive from self-reported answers, vague 

personality assignments, and misleading interpretations [6,20]. 

These concerns introduce forms of bias that obscure the results 

and can oversimplify the complexities behind one’s behaviours.  

Therefore, the categorizations should not be seen as absolute but 

rather as opportunities for individuals to develop self-awareness 

and self-reflect on their actions. With such an introspective look, 

individuals can use the information to exercise behaviours and 

actions that may differ from the norm, allowing them the 

opportunity to grow. 

 Our premise is that a framework similar to personality tests, 

applied to CAD work, will provide the same helpful 

introspection to designers as they increasingly work together on 

teams with cloud-CAD. 

 
2.3 CAD Analytics 
 Traditionally, personality tests rely on self-reported answers 

to a pre-determined set of questions. Similarly, previous work 

has explored questionnaires for classifying CAD trainee 

expertise to eventually predict performance [21].  

 An alternative to self-report questionnaires for generating 

CAD classification data is to observe the controlled behaviours 

of CAD designers via experiments. Recent progress has been 

made to develop and validate platforms for gathering data for in-

person CAD work [22–25]. These platforms provide detailed and 

multi-modal data, but at the expense of natural working 

environments. 

 Rather than relying on self-reports or experimentally 

derived data, we can instead exploit real CAD work from expert 

designers in industry, as extracted via user analytics from the 

CAD software itself. CAD analytics have been explored in the 

past; Xie et al. first generate their own CAD analytics logging 

system to do time series analysis [26]; next, they explored how 

CAD analytics may be used to assess learning in engineering 

design projects [27]. Modern cloud-CAD systems make CAD 

data even more accessible and reliable, and as such is the 

approach we take for data generation in this paper. 

 

3. METHODOLOGY 
 

3.1 Data from Industry Partner 
 We worked in conjunction with an industry partner to 

receive historical CAD activity from an authentic work situation 

rather than a simulated one. The industry partner is a company 

that focuses on building automated robots that clean large 

commercial spaces such as airports, shopping malls, and 

hospitals. In April 2020, the company began transitioning to the 

cloud-CAD software Onshape, to facilitate data management 

and control over their workflow. Currently, the team consists of 

eight individuals who use the software to varying degrees to 

fulfill their responsibilities. One individual was the internal 

champion of the new software platform, the first to learn the tool 

and explore many of its functionalities. Another individual was 

the manager, with responsibilities to review and approve CAD 

models. The remainder of the designers’ roles are mechanical 

designers, who contribute both to digital modelling as well as 

prototyping and testing. The eight users have been anonymized 

and are represented as users ‘A’ – ‘H’. 

 

3.2 Onshape Analytics 
One of the management features available to Enterprise 

users of Onshape is  Analytics, which records all events that take 

place within the server. Events are the actions that an Onshape 

user performs within the software. These events are divided into 

two categories: ‘document’ and ‘user’. ‘Document’ events refer 

to actions that cover a document's lifecycle and its parts (e.g. 

Create/Open/Delete tab), while ‘user’ events refer to actions 

regarding the lifecycle of a user (e.g. Login, Add User). The data 

is presented as an audit trail which provides the timestamp, user, 

and document location for any given event.  

Within the audit trail, several events and definitions are 

Onshape-specific. Unlike traditional CAD software, documents 

in Onshape are bins of information that can contain a variety of 

elements. Elements refer to the different workspaces such as part 

studios, assemblies, and drawings. Often, these elements are 

presented as tabs at the bottom of an Onshape document. 

For the purposes of this study, we examine the frequency 

and occurrence of these events within the private enterprise 

cloud-CAD account of our industry partner.  

 

3.3 Analysis 
The ianalytics data comprised of an audit trail with 

1,420,234 events. We began by using the statistics package 

Minitab to perform an overview analysis of the data to view 

general patterns in activity. From a preliminary analysis, we 

identify high level trends and themes. We then performed 

hierarchical clustering to reveal relationships between our users 

and events.  



 3 © 2021 by ASME 

Rather than group events from logical understanding of the 

activity, we proceed with clustering based on the data to 

determine which events are more likely to be used concurrently 

in practice, rather than in theory. Hierarchical clustering is a 

method that creates groups according to the common shared 

characteristics between observations. Clusters are formed using 

the similarity between these characteristics [28], which in our 

case was the proximity of time between events in the 

observations. Variables being grouped closely together indicates 

that these variables are more likely to occur in sequence with one 

another. These groupings are presented in dendrograms which 

give a visualization of the data. To determine the number of 

clusters, we identify sections with relatively large changes in 

similarity, serving as potential cutoffs. We supplement this 

information with a logical understanding of the group contents 

to determine the appropriate cutoff for the data. The process for 

selecting the cutoff for the user clusters can be seen in the 

Appendix. Given the relatively small sample size of the variables 

and users, this clustering approach allows us to visualize the 

groupings and draw conclusions from the dendrograms. 

We begin by creating a dataset of event counts for each user, 

and via hierarchical clustering, we separate the users into three 

distinct groups. To better understand these cluster assignments, 

we then focus on understanding the relationship between events. 

This method highlights which events are more likely to be used 

concurrently in practice. 

To prepare our data for variable clustering, we filter the 

observed event types from 157 to the 79 that were most 

prominent in the dataset; the omitted events were either 

committed by only one user or were used a negligible amount. 

Given that users ‘F’, ‘G’, and ‘H’ were less active, they were 

omitted from variable clustering to focus on those who regularly 

used the software. Events are grouped according to frequency in 

which they appear concurrently in an observation, therefore 

focusing on a smaller window of time presents more coherent 

groups. At first, we observed each user's monthly activity, but to 

achieve a higher granularity level, we pivoted to weekly activity 

before finally deciding to observe the daily activity. With each 

iteration, the logical coherence for each cluster became more 

defined. 

Using the newly formed variable clusters, we created 

distributions for each user; these breakdowns revealed potential 

explanations for their assignment during user hierarchical 

clustering. After analyzing the information, we regrouped with 

our industry partner to learn more about their CAD behaviours. 

This discussion corroborated our initial conclusions by revealing 

how the team collaborated, highlighting the roles that specific 

users had on the team, and explaining anomalies that were found 

during analysis. 
 

4. RESULTS 
An initial review of the data revealed that activity started 

relatively low in the initial months and gradually built up until 

the first peak in July. After a slight drop, we then encounter a 

second peak of CAD activity in October, observed in Figure 1A. 

Additionally, Figure 1B shows the user distribution of CAD 

activity in 2020, with user ‘A’ performing the most actions. 

Conversely, users ‘F’, ‘G’, and ‘H’ contributed the least to the 

CAD modelling activities. 

 

4.1 User Clustering 
 We created an array in which each row had the user event 

count during 2020. The users are divided into clusters based on 

the similarity of their variables. As seen in Figure 2, user ‘A’ has 

behaviour that differs from that of the rest of the team. We also 

notice that ‘B’ and ‘C’ are paired, while users ‘D’ – ‘H’ are 

grouped separately. To better understand the user assignments, 

we next aimed to identify how the variables influenced the 

groupings. 

 

A 

 
B 

 
FIGURE 1 A and B: (A) MONTHLY CAD ACTIVITY 

BREAKDOWN OF ALL DESIGNERS AT INDUSTRY PARTNER IN 

2020. (B) INDIVIDUAL USER CONTRIBUTIONS TO CAD 

SERVER ACTIVITY 
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4.2 Variable Clustering 
 By grouping variables into clusters, we can identify ‘types’ 

that describe higher-level activities in which the corresponding 

variables are being used. To better identify the correlation 

between different events, we gathered counts of the events that a 

user performed each day. Given that users ‘F’, ‘G’, and ‘H’ made 

relatively fewer contributions than their teammates, we focused 

on analyzing activity from users ‘A’ - ‘E’, resulting in 737 

instances of daily activity with 79 unique variables. The 

variables were then clustered together, resulting in the 

dendrogram shown in Figure 3, which shows the overall variable 

separation.  

 

 
FIGURE 2: DENDROGRAM SHOWING CLUSTERS FOR 

ONSHAPE USERS. COLOURS INDICATE 3 CLUSTERS. 

 

 
FIGURE 3: DENDROGRAM SHOWING OVERALL CLUSTER 

BREAKDOWN FOR 79 VARIABLES. COLOURS INDICATE 14 

CLUSTERS.  

 

 We use the plateaus of similarity as a reference to determine 

where to create groups. After observing the resulting groups, we 

identified 14 logical cluster names. Figure 4 and Table 1 further 

display the breakdowns.  

 

4.3 Cluster Breakdown (Type Breakdown) 
 Using the newly formed clusters, we found the total number 

of events each user performed in each cluster. These counts were 

then converted to a percentage distribution per user to determine  

an individual’s activity and CAD task distribution. As seen in 

Table 1, ‘Element’ and ‘View/Scan’ comprise most of the CAD 

activity, with users ‘A’-‘C’ scoring higher in the former. User ‘E’ 

scores highest in ‘View/Scan’. There are more active commands 

from clusters 1 – 3, whereas 4 – 14 display a mix of 

passive/reaction ones.  

 

5. DISCUSSION  
5.1 Cluster Coherence   
The identified type clusters have varying coherency levels. The 

logical association between variables can be seen within such 

clusters as ‘Part Studio’. The instances within ‘Part Studio’ either 

refer to Part Studio by name or are associated with Part Studios, 

such as ‘Add or modify a sketch’. This trend also continues 

within our ‘Assembly’ cluster, in which events directly relate to 

assembly activity. While these clusters have a logical cohesion, 

others do not experience as much harmony. Our largest cluster, 

‘View/Scan’, is a conglomerate with a level of congruency that 

is disturbed by a few extraneous events. Six of the variables 

contain the phrase ‘Open’ or ‘Close’. The association between 

these events implies a situation in which a user’s main actions 

are simply viewing a document and its components. While these 

actions describe passive commands, the ‘Update Metadata’ 

events imply more actionable behaviour. 

 Additionally, our smaller clusters require a looser 

interpretation because the variables do not have an immediate 

connection to one another, making it somewhat challenging to 

provide a proper label. This disparity is particularly noticeable in 

cluster ‘10’, comprised of the two variables, ‘Delete Workspace’ 

and ‘Comment on a workflowable object’. Despite being 

labelled ‘Delete’, the two cluster ‘10’ events do not have an 

immediate logical connection. Such groupings are likely a result 

of the relatively small user dataset. While we observed 737 

instances of daily behaviour, these actions were still only 

performed by five distinct users.  

5.2 Validation with Industry Partner 
 After analyzing the audit trails and clustering observations, 

we returned to our industry partner to discuss the company’s 

experience and habits using CAD software. This discussion 

provided context to the data and provided explanations for our 

observations. 

 Our industry partner revealed that the transition to Onshape 

had been a gradual one, with users adopting the software at 

various points in the year. Several of our observations were 

corroborated within this discussion. Our analysis revealed that 

user ‘A’ exhibited vastly different patterns than their peers. Our 

industry partner revealed that one particular user – identified as 

‘A’ - wanted to familiarize themselves with the software and 

experimented with the software's different features. This 

individual also took the responsibility of transferring legacy data 

to the current software, explaining why they exhibit unique 
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behaviour. Additionally, they disclosed that two teammates, who 

we labeled as ‘B’ and ‘C,’ were responsible for the CAD design 

of a new product in advance of an October milestone. While 

these two worked on the same project, they split the tasks in half 

and designed components independently before integrating them 

in the end. The legacy data transfer and project modelling align 

with the July and October peaks, which were initially identified 

in Figure 1, respectively. Further, without knowing the document 

or project details – only the actions - we were able to identify 

users ‘B’ and ‘C’ as having quite similar CAD histories reflecting 

their split of the modeling work, indicating that they had taken 

on similar work behaviours. 

 

A 

 

B 

 
C 

 

D 

 
FIGURE 4 A, B C, and D: ALL 79 VARIABLES IN 14 CLUSTERS, REPRESENTED IN DENDROGRAMS 
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TABLE 1: MAPPING OF VARIABLES TO CLUSTERS 

 

 
 

 Lastly, regarding Table 2, we generated a breakdown of the 

user activity by cluster. Users ‘B’ and ‘C’ exhibit comparable 

distributions, further emphasizing why the two were grouped in 

our initial analysis. The table also shows likely why users ‘D’- 

‘H’ were grouped closely together, with each of these users 

having their ‘View/Scan’ type outweigh their ‘Element’ 

contribution. Such a categorization implies a more passive CAD 

role which the team corroborated. User ‘E’ was identified as 

having the reviewer role for the team. The distribution table 

corroborates this role because user ‘E’ has the highest 

‘View/Scan’ score and the second highest ‘Comment’ score. 

Scoring high in ‘View/Score’ is indicative that this individual 

does not necessarily create the initial documents but will review 

others’ work. Additionally, having a relatively higher ‘Comment’ 

score suggests that an individual who reviews work is more 

likely to question or provide feedback on the project. 

 Using analytics, we predicted potential roles and habits; 

upon further discussion, we found that our observations aligned 

with the team’s process and timeline. Despite access to only 

limited information about the team’s CAD practices, we could 

pinpoint certain design behaviours from only the analytics data. 

 

5.3 Application of Type Breakdown 
 Personality tests provide an insight to an individual’s work 

habits. Inspired by the application of these tests, we developed a 

framework that creates newly identified types that serve as a 

basis for understanding CAD behaviours in industry users. From 

meeting with our industry partner, we were able to corroborate 

our findings and provide additional context to the data 

developing a framework that can be applied in a larger scope.  

 We propose that type breakdown can be a tool for 

onboarding. For example, new employee ‘X’ is unfamiliar with 

cloud-CAD and is given a week to learn the software. After this 

period, the team lead reviews the new user’s breakdown, which 

can be seen in Table 3, finding that ‘X’ performs similarly to user 

‘E’, who serves as a reviewer. However, user ‘X’ was hired to 

join the designer team. When comparing their activity to that of 

‘B’ and ‘C’, the team lead can provide recommendations on 

which events the new user should focus on learning and 

implementing. The team lead identifies ‘Assembly’, ‘Part 

Studio’ and ‘Element’ as areas in which user ‘X’ is currently 

lacking. By focusing and strengthening their knowledge in these 

areas, ‘X’ works to meet the habits of that of a designer. This tool 

is beneficial for newer members to have a system that pinpoints 

which areas need attention to achieve their desired role. If ‘X’ 

intended to join the team as a reviewer, the team lead could 

determine that they are on the right trajectory to meeting the 

role’s responsibilities from a quantitative perspective. 

 

5.4 Limitations and Future Work 
 Given that the industry partner is still in their initial stages 

of transition to the cloud-CAD software, future audit trails may 
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contain more mature and representative information. Currently, 

we examine activity primarily from five users. We anticipate that 

as our industry partner develops more projects and individuals 

become more familiar with the software, we may observe 

changes in the observed type distributions. 

 Additionally, this research focused on activity counts 

without considering collaboration. After identifying similar 

behaviours through analytics, we can add a layer of complexity 

by considering each event's document location. By including 

document ID information, we can observe user interactions, 

identifying proactive or reactive actions. The collaboration was 

reasonably limited in this study as work was primarily 

independent. To further expand the analysis, the research will 

benefit from analyzing audit trails from additional companies.  

Such observations will indicate whether companies have a 

unique ‘footprint’ regarding CAD or if type distribution is 

consistent and perhaps universal.  

6. CONCLUSION 
 We developed and demonstrated a framework for 

classifying individual designers by cloud-CAD behaviours. The 

framework was developed via the analysis of 8-months of real-

world product development CAD data from an industry partner. 

We first clustered the eight designers by their CAD activity. 

Next, we clustered the CAD activity, consisting of 79 actions, 

revealing 14 action groups that tended to occur together. Finally, 

we present how the eight designers contribute actions to each of 

the action groups. Observed trends were confirmed with 

discussions with the industry partner. 

 With this large-scale CAD analytics data, we are able to 

classify “types” of the individual designers and action groups 

where some designers contributed more deeply than others. The 

analytics provided the industry partner team with insight that was 

previously inaccessible.  

 Our framework facilitates self-assessment and awareness 

for individual designers. It can help managers and supervisors 

generate constructive feedback, onboard new people, identify 

team strengths and weaknesses, and ultimately build a well-

rounded CAD team. Future extensions of the framework could 

leverage artificial intelligence techniques to provide real-time 

feedback on designer roles. This work can lead to more effective 

and efficient CAD modelling, and ultimately, higher quality 

products in less time.

 
TABLE 2: BREAKDOWN OF TEAM MEMBER (A-H) PERCENTAGE CONTRIBUTIONS IN EACH OF 14 CLUSTERS OF CAD ACTIVITIES. 

COLOUR DEPTH CORRESPONDS TO MAGNITUDE OF PERCENTAGE.  
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TABLE 3: SAMPLE DISTRIBUTION OF USER X. THEIR BEHAVIOUR MATCHES THAT OF A REVIEWER BUT NEEDS FOCUS ON 

ACTIVE EVENTS TO MATCH THAT OF A DESIGNER. 
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APPENDIX 
 
Dendrogram Clusters 

To identify the number of clusters in our dendrograms, we 

review our Minitab output which reveals the changes in 

similarity as new clusters are formed.  We look for relatively 

large changes in similarity to serve as our cutoffs. In Table A1, 

we have the Minitab output for our users dendrogram; there are 

relatively large changes at 2 and 3 clusters, with similarity 

differences of 55.2% and 22.5%, respectively. In Figure A1, we 

have a visual representation of how these differences translate to 

our dendrogram. These serve as potential cutoffs for our 

dendrogram, with the former creating two groups and the latter 

creating three groups. To achieve a greater level of granularity, 

we proceed with the latter. Using this method, we use Table A2 

to determine the number of groups for our events dendrogram. 

Starting from Number of clusters = 1, we experience relatively 

large similarity jumps at 2 (1.62%) and 4 (1.01%) clusters; 

however, we continue to expand the number of clusters because 

the current group contents lack coherence. At 13 and 15 clusters, 

we see similarity differences of 0.97% and 1.01%, respectively. 

We inspect the event clusters from 13 to 15 to identify whether 

the groups have logical coherence. We determine that 14 is the 

appropriate number of clusters for this dataset as we can define 

the context in which the events are being used. While we could 

further break down these clusters, we risk overdefining our data 

and create clusters that contain few unrelated events.  

 

 

 

 

 

 

 

 

 

 

 

 

 
TABLE A1: MINITAB OUTPUT OF SIMILARITY LEVELS FOR 

DENDROGRAM OF USER CLUSTERS. 

 

 
 

 

 
FIGURE A1: DENDROGRAM OF USER CLUSTERS SHOWING 

THE POTENTIAL CUTOFFS.  

Number of 

clusters

Similarity of 

feaures [%]

Similarity difference from 

previous cluster [%]

1 0.00 x

2 55.24 55.24

3 81.04 25.81

4 82.79 1.74

5 95.46 12.68

6 97.21 1.75

7 98.89 1.68
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TABLE A2: MINITAB OUTPUT OF SIMILARITY LEVELS FOR DENDROGRAM OF EVENT CLUSTERS. 

 

 

Number of 

clusters Similarity level [%]

Similarity difference from 

previous cluster [%]

Number of 

clusters Similarity level [%]

Similarity difference from 

previous cluster [%]

1 46.26 x 40 75.81 0.31

2 47.88 1.62 41 76.01 0.20

3 47.91 0.03 42 77.58 1.57

4 48.92 1.01 43 78.43 0.85

5 49.28 0.36 44 80.23 1.80

6 49.62 0.34 45 80.30 0.07

7 50.15 0.53 46 80.53 0.23

8 50.44 0.29 47 81.16 0.64

9 50.49 0.05 48 81.52 0.36

10 51.25 0.76 49 83.24 1.72

11 51.67 0.42 50 85.25 2.00

12 51.82 0.15 51 85.39 0.14

13 52.79 0.97 52 85.59 0.21

14 53.05 0.26 53 85.92 0.33

15 54.06 1.01 54 86.06 0.14

16 54.12 0.06 55 86.21 0.15

17 54.35 0.23 56 86.51 0.30

18 54.98 0.63 57 86.59 0.08

19 55.01 0.03 58 90.05 3.47

20 55.83 0.81 59 90.84 0.79

21 57.08 1.26 60 92.23 1.39

22 57.33 0.24 61 93.10 0.87

23 58.63 1.30 62 93.69 0.59

24 59.43 0.80 63 94.08 0.40

25 60.00 0.57 64 94.76 0.67

26 60.91 0.90 65 96.47 1.72

27 62.42 1.51 66 96.87 0.40

28 63.41 0.99 67 97.51 0.64

29 66.23 2.82 68 97.90 0.39

30 67.25 1.03 69 98.13 0.23

31 69.33 2.08 70 98.38 0.25

32 69.88 0.54 71 98.39 0.01

33 70.35 0.48 72 99.09 0.70

34 70.79 0.44 73 99.60 0.50

35 71.63 0.83 74 99.72 0.12

36 71.85 0.22 75 99.73 0.01

37 72.31 0.46 76 99.89 0.16

38 73.06 0.75 77 99.97 0.08

39 75.50 2.43 78 99.98 0.01
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